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Introduction

I In a simple experiment the average treatment effect is the difference in sample
means between the treatment and the control group

I This is the OLS coefficient of β in the regression

Yi = α + βTi + εi



Regression analysis of OLS
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Statistical power

How many observations are enough?

Definition
The power of the design is the probability that, for a given effect size and a given
statistical significance level, we will be able to reject the hypothesis of zero effect
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Statistical power

I Is the unit of treatment the same as the unit of analysis? Or, is the
treatment to be administered to a ‘cluster’ of units?

I Examples of individual randomizations:

I Individuals who are given mobile phones to induce them to use an m-banking
platform

I Farmers individually provided with improved agricultural inputs

I Students admitted to an elite school by a lottery process
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Randomizing at the Unit of Analysis

I The estimate of treatment effect is β̂ in the regression

Yi = α + βTi + εi

I The mean of β̂ is β (the true effect)

I The variance of β̂ is V (β̂) = σ2

p(1−p)N

I σ2 is the variance of the outcome (Yi )

I p is the proportion of treated units

I N is the number of observations



Randomizing at the Unit of Analysis

I We are generally interested in testing the null hypothesis (H0) that the effect of
the program is equal to zero against the alternative that it is not

I The significance level, or size, of a test represents the probability of a type I
error, i.e., the probability we reject the hypothesis when it is in fact true

I The power of the test the probability that we reject H0 when it is in fact false

We will constantly use the fact that:

β̂ ∼ N

(
β,

σ2

p(1 − p)N

)
We often normalize the outcome and present results in terms of SD (so σ2 = 1).
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Significance level - Assume null is true (no effect)
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Power when the effect is β1

For a true effect size β this is the fraction of the area under this curve that falls to the
right of the critical value tα

2



Power when the effect is β = 0.1
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Blue area is the probability we reject the null when β is 0.1



Power when the effect is β = 0.1
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Power when β1 = 0.1, N = 4, and p = 0.5
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Power when β1 = 0.1, N = 100, and p = 0.5
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Power when β1 = 0.1, N = 1, 000, and p = 0.5
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Power when β = 0.2, N = 1, 000, and p = 0.5
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Power when the effect is β = 0.3, N = 1, 000, and p = 0.5
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Power when the effect is β = 0.3, N = 1, 000, p = 0.5, and σ = 0.7
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Statistical power and clusters

I All these quantities we just looked at are related

I To achieve a power κ, it must therefore be that

β > (tα
2

+ t1−κ)σ
β̂



Minimum detectable effect

I The minimum detectable effect size for a given power (κ), significance level
(α), sample size (N), and portion of subjects allocated to treatment group (p) is
given by

MDE = (tα
2

+ t1−κ)

√
σ2

p(1 − p)N



Randomizing at the Unit of Analysis

I The standard is to set κ = 0.8 or κ = 0.9

I The standard is to set α = 0.05 or α = 0.1

I The variance of outcomes σ2 is typically the raw variance of the dependent
variable you intend to use

I The sample size N is the number of observations in the study (you can change
this)

I The fraction of the sample treated is p (you can change this)



Effect vs Power
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Sample size vs MDE
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How should you think about the MDE?

I What is the treatment effect below which it is pointless to implement the
program?

I What is the minimum treatment effect that would make you willing to scale the
program?

I If sample size is too small, you’re likely to end up with an insignificant result for
something that actually matters

I Small organizations often do not have the numbers to make an RCT worth
conducting.
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Cluster Randomized Experiments

I Is the unit of treatment the same as the unit of analysis? Or, is the treatment
to be administered to a ‘cluster’ of units?

I Examples of clustered randomizations:

I Changing the business practices at a firm level and studying the impact on individual
employees

I Providing schools with new textbooks and studying the effect on individual student
performance

I Offering a new financial service to all residents in a village and studying the impact
on micro enterprise outcomes

I In a clustered randomization the power of the study is coming partly from the
number of individuals in the study, and partly from the number of clusters in the
study
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Cluster Randomized Experiments

I The estimate of treatment effect is β̂ in the regression

Yij = α + βTj + ωj + εij

I σ2 is the variance of the outcome (εij)

I τ2 is the variance of the outcome (ωj)

I p is the proportion of treated units

I n is the number of observations in each cluster

I J is the number of clusters

I The variance of β̂ is σ
β̂

= nτ2+σ2

p(1−p)nJ



Cluster Randomized Experiments

I Often, expressed using the intra-cluster correlation (ICC) ≡ τ2

τ2+σ2

I The variance of β̂ is V (β̂) = σ2
ρ+ (1−ρ)

n
p(1−p)J

I The ICC can be obtained using loneway in stata



Minimum detectable effect

I The minimum detectable effect is given by

MDE = (tα
2

+ t1−κ)σ

√
ρ+ (1−ρ)

n

p(1 − p)J



Power Calculations Rules of Thumb

I For an individual-level experiment, 200-300 observations will typically be sufficient
to detect a reasonable effect size

I For a clustered experiment, a low ICC (0.1) would need 50-100 clusters and > 5
observations per cluster to detect a moderate effect. As the ICC gets larger, the
number of clusters has to go up

I For very complicated research designs, you can always use simulations to get the
power of the design
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Blocking/Stratification

I A significance of a test is the chance that you have significant imbalance between
the treatment and the control for a given variable

I What if you have a variable that you want to ensure is balanced across treatment
and control?

I This can easily be achieved by using this variable in the randomization



Blocking/Stratification

I Take a binary or categorical variable that describes the groups you are concerned
about balance over (gender, occupational categories, geographical regions)

I Perform the randomization to assure that exactly a share p units is treated within
each group

I The experiment is balanced across groups by definition

I This also implies that we have a replica of the experiment within each subgroup

I You are in the best position to examine treatment effects by subgroup

I Analysis of a blocked randomization should include fixed effects for the blocks



Blocking/Stratification

I To conduct a blocked randomization:

I Start with all the observations within which you want to randomize

I Create a variable that identifies the blocks

I Create a random number (using randomvar = runiform() command in Stata)

I In Stata you will get a different time you run your do file unless you have set the
seed. To do this, include the command ‘set seed madeupnumber’

I Sort the data first by the group identifier, and then by the random number

I Take the first fraction p of every group and assign to treatment



Blocking/Stratification

I Natural relationship between blocked or stratified designs and pre-commitment in
experimentation

I When there is no effect, at the 5% level, 1/20 variables will be significantly
different between treatment and control

I One solution is a pre-analysis plan that specifies the hypotheses you intend to test

I Another variant of this problem is looking for heterogeneity in treatment effects

I Signal that you are interested in examining a specific type of heterogeneity by
blocking/stratifying on that characteristic



How to think through the way to randomize

I Kernan et al. (1999) summarize the potential advantages of stratifying:

I Balance on variables correlated with the outcome of interest

I Protecting against type I error (by reducing the chance of imbalance)

I Facilitating sub-group analysis by assuring balance of treatment status for this
subgroup

I Protecting against “stratas” dropping-out of the experiment (still have a valid
experiment for the other strata)

I Increasing power, and therefore efficiency, by reducing the residual variance (but not
always)



How to think through the way to randomize

I Trade off of blocking on more attributes in the randomization:

V (βwithout controls)

V (βwith controls)
=

n − 2
∑

û2i
n − k − 2ε̂2i

I ε̂ is the residual once the blocks fixed effects are included

I k is the number of degrees of freedom lost (number of blocks)

I û is the residual when blocks are not included

I Blocking on a completely irrelevant variable may decrease power
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Re-randomization or ‘Big Stick’

I Write a loop to iterate the randomization many times, and then pick the ‘best’
randomization

I Two ways of doing this

I Test for balance on a set of covariates and iterate until all p-values look good

I Conduct the randomization X times and then pick the one that has the best balance

I There is no way to adjust the analysis of the experiment for the way the
randomization was done

I Forced to do randomization inference

I Beware human error, and use simpler methods!
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“As Ye Randomize, So Shall Ye Analyze”

I Bruhn and McKenzie provide good rules of thumb for how you’ll have to handle
your data based on the way the randomization is done:

I Cluster the standard errors in a regression on a Cluster Randomized Trial

I Include fixed effects for the blocks used in randomization

I No easy way to adjust regressions for re-randomization routines, which should make
us leery of these. Need to conduct randomization inference

I If you have a small sample and use re-randomization over a large number of draws
the sample becomes almost deterministic

I Typical regression in Stata:
reghdfe outcome treatment, absorb(strata) vce(cluster groups)



Do balance tables make any sense?

I Why would you test for the number of imbalances that occur when you know that
the imbalances occur by random chance?

Answer: you might have screwed
something up!

I Testing balance on variables for which you forced balance through
blocking/stratification/re- randomization is completely degenerate

I Hard to confirm that variables presented haven’t been systematically chosen

I Should you adjust for imbalanced covariates? Freedman says no but it is difficult
to avoid doing this once you’ve shown large imbalances on a critical covariate.

I For better or worse, balance tests persist
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